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Neurodegenerative diseases are a major health problem worldwide. Statistics suggest that in 2030, in America alone, 
there will be more than 12 million people who will present with a neurodegenerative pathology. Despite the multifactorial 
etiology of each neurodegenerative disease, all of them share highly marked immune and inflammatory components in their 
pathophysiology. Different immunomodulatory therapies have been suggested, particularly immunization with modified 
neural peptides, which have been introduced as a novel treatment over the last decade. Generally, this neural peptide 
therapy involves inoculating the central nervous system using natural constituents with minor biochemical modifications to 
boost protective autoimmunity, producing an autoreactive response that, instead of creating brain damage, induces a healing 
environment. Immunization with modified neural peptides has demonstrated encouraging results both in vitro and in vivo in 
multiple models of neurodegenerative diseases. In this review, we analyze the therapeutic effects of modified neural peptides 
in preclinical models of commonly diagnosed neurodegenerative disorders, namely Alzheimer’s disease, Parkinson’s disease, 
and stroke. Our goal is to highlight hallmark discoveries of modified neural peptides and identify gaps in knowledge that 
would allow safe and effective applications of these peptides to treat neurodegenerative disorders.
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Introduction 
Neurodegenerative disease (NDD) is a term commonly used 
to describe neurological disorders that compromise normal 
brain structure and physiology with progressive neurovascular 
damage following the onset of the disease. Public understanding 
of NDDs usually associates this term with chronic, non-curable, 
dementia-leading pathologies such as Alzheimer's Disease (AD). 
Nevertheless, the term neurodegeneration specifi cally alludes to 

brain damage that diminishes neurological function from a basal 
level of normal performance to a defi cient condition (Kovacs, 
2017). Thus, NDDs can be defined as brain disorders with 
impaired neurovascular units and reduced neurological capacity. 
This set of pathologies can be chronic, like AD or Parkinson's 
Disease (PD), as well as acute, such as stroke (Kovacs, 2017; 
Giri et al., 2024). NDDs are a health problem worldwide. In 
America alone, it is estimated that by the year 2030, there will 

Highlights
We review the scientifi c evidence supporting modifi ed neural peptide therapy as a  promising interention for modulating immune 
responses towards an anti-infl ammatory and self-repairing phenotype, potentially offering neuroprotection and regenerative effects 
in neurodegenerative diseases, specifi cally  Parkinson's disease, Alzheimer's disease, and stroke. Immunization with modifi ed neural 
peptides may represent a novel conditioning medicine approach to proactively strengthen the immune system against deleterious peptides may represent a novel conditioning medicine approach to proactively strengthen the immune system against deleterious 
infl ammatory responses associated with neurodegenerative diseases. Overall, this review highlights the urgent need for effective 
treatments against neurodegeneration and suggests modifi ed neural peptide immunization as a promising conditioning medicine 
therapeutic intervention.
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be more than 12 million cases. As NDDs are closely related, 
their incidence is expected to rise accordingly as life expectancy 
increases (Kontis et al., 2017).
     NDDs vary in etiology and clinical presentation. 
Nevertheless, neuroinflammation has been identified as a 
key element of every NDD pathophysiology. A fundamental 
inflammatory model applied to NDDs stipulates that the initial 
anti-inflammatory response to the brain injury helps to heal and 
limit the primary insult. Unfortunately, the anti-inflammatory 
response is usually overtaken by deleterious pro-inflammatory 
reactions (Iadecola, 2017; Cai et al., 2017), including microglial 
secretion of cytokines such as tumor necrosis factor-a, 
interleukin (IL)-1b, cluster of differentiation 1, IL-6, vascular 
adhesion proteins, and chemoattractants, among others 
(Subhramanyam et al., 2019), and activation of macrophages 
under an M1 phenotype that produces reactive lymphocyte 
infiltration, reactive oxygen species, oxidative stress, and a 
pro-apoptotic state (Subhramanyam et al., 2019; Hickman et 
al., 2018). Under these detrimental inflammatory conditions, 
the neurovascular unit begins to deteriorate, combined with 
other cell death mechanisms such as aberrant oxidative stress, 
mainly due to glutamate overproduction and NMDA receptor 
overstimulation (Yu et al., 2020). Similarly, astrocytes suffer 
from excitotoxicity that increases glutamate and Ca2+ release 
(Iadecola, 2017; Yu et al., 2020). Endothelial cell dysfunction 
leads to impaired nitric oxide-mediated vasodilation, and 
vascular cells release matrix metalloproteinases (MMPs) that 
lead to degradation of the extracellular matrix and loss of tight 
junction structure, altogether initiating blood-brain barrier 
(BBB) dysfunction and leakage (Thurgur and Pintaux, 2019).
     Different NDD therapies have been investigated over the 
years, mainly because most current therapies purely produce 
symptomatic relief, with very few able to limit the expansion 
of tissue damage (Ridolfi and Abel, 2017). By recognizing 
neuroinflammation as a key element of NDD progression, 
finding a treatment that modulates inflammation may prove 
effective as a disease-modifying therapy. Immunization with 
modified neural peptides (MNPs) is a novel therapy targeting 
the inflammation associated with NDDs (Carniglia et al., 2017; 
Petrella et al., 2019). MNP therapy consists of inoculating with 
peptides that provide beneficial immune functions to the brain 
(Carniglia et al., 2017; Petrella et al., 2019). In this article, we 
present a brief review of MNPs and their potent therapeutic 
effects in preclinical models for AD, PD, and stroke.

Modified Neural Peptides
MNPs are short immunogenic amino acid sequences with 
modifications in their biochemical structure to confer efficient 
modulation of the immune response. The specific variation 
in the amino acid sequence of MNPs allows the peptides to 
bind with and trigger the T cell receptor to exhibit a state of 
anergy or even into an active anti-inflammatory phenotype 
(Rodríguez-Barrera et al., 2017; Monroy et al., 2023). MNPs 
produce their effects by modulating neuroinflammation rather 
than completely eradicating the immune response, which 
makes them unique compared to other immunomodulatory 
approaches. MNP therapy generates an autoreactive state in 
the protective anti-inflammatory phenotype. As noted above, 
the established cascade of inflammation-mediated cell death in 
NDDs consists of an initial acute anti-inflammatory response 
that is subsequently substituted by a chronic pro-inflammatory 
reaction, diminishing anti-inflammatory effects (Suárez-
Meade et al., 2015; Wei et al., 2020). Accordingly, finding 
a strategy that sustains that therapeutic anti-inflammatory 
response over time and retards the onset of the harmful pro-
inflammatory reaction will likely benefit NDDs. This sustained 
anti-inflammatory response appears to be achieved by MNP 
inoculation.

     MNPs have shown promising effects against NDDs by 
inducing beneficial morphological and functional changes 
in in vitro and in vivo models of NDDs. Some MNPs exert 
their function using adaptive immunity, following a vaccine 
model that involves sensitizing the immune system against 
structural components of the central nervous system that 
manifest in NDDs. Thus, when the pathology actually takes 
place, the previous sensitization triggers an anti-inflammatory 
response characterized by elevated human type 2 helper (Th2) 
lymphocytes that promote a conducive microenvironment for 
brain regeneration. Furthermore, activated Th2 lymphocytes can 
create a neuroprotective microenvironment that may regulate 
secondary damage even days or weeks after the acute injury, 
thereby proactively preventing the persistent damage due to 
chronic neuroinflammation (García et al., 2019). By promoting 
a Th2 response, microglial cells go through T cell-mediated 
regulation, elevated IL-10 expression, and transforming growth-
factor beta upregulation, while lipid peroxidation, free radical 
production, and apoptosis are halted (Parra et al., 2020). This 
MNP-sustained activation of the anti-inflammatory phenotype 
leads to the release of therapeutic molecules that promote 
neuroprotection and neuroregeneration, thereby affording a state 
of anergy that avoids the development of autoimmune diseases, 
i.e., aberrant chronic pro-inflammatory reactions.
     Indeed, accumulating evidence demonstrates MNPs' capacity 
to modulate the immune response in NDDs and shift the pro-
inflammatory state to an anti-inflammatory phenotype, which 
could lead to retardation of the initial injury and sequestration 
of the secondary injury or chronic progression, ultimately 
reducing the pathological symptoms of NDDs (Rodríguez-
Barrera et al., 2017; Westwell and Berchere, 2019). The 
subsequent sections provide specific examples of successful 
MNP treatment in NDDs and identify remaining lab-to-clinic 
obstacles that warrant further investigations.

Alzheimer's disease
AD is a major health concern that affects people all over 
the world (Høgh, 2012). It is a progressive NDD that causes 
cognitive deterioration and is the leading cause of dementia 
(Lane et al., 2018). Understanding the role of two peptides that 
play a major part in the disease pathogenesis may allow key 
insights into AD etiology. Amyloid-β (Aβ) is an aberrant peptide 
of 39-43 amino acids that results from the misfolding of the 
α-helical domains into β-sheet structures (Hane et al., 2017). Aβ 
is produced by the breakdown of Aβ precursor protein (AβPP), 
which regulates cell survival, proliferation, motility, cholesterol 
binding, and metal ion homeostasis under physiological settings 
(Hane et al., 2017). The Aβ amyloidogenic pieces oligomerize 
and form aggregates after being cleaved by secretase enzymes, 
eventually depositing and accumulating to form plaques. This 
oligomerization activates several kinases (Tiwari et al., 2019). 
Aβ oligomers can cause synapse loss and dysfunction (Jeong, 
2017). Alterations in ion channels, poor calcium homeostasis, 
increased mitochondrial oxidative stress, and decreased energy 
metabolism are other negative outcomes triggered by this 
oligomerization (Tiwari et al., 2019).
    Tau protein, a microtubule-associated protein present in 
axons whose role is to promote cytoskeleton stability, is the 
other major molecule involved in AD pathogenesis (Hane et al., 
2017; Naseri et al., 2019). Tau hyperphosphorylation is favored 
by the abundance of kinases released by Aβ, resulting in its 
oligomerization and production of insoluble neurofibrillary 
tangles (NFTs). NFT build-up within neural structures, 
disrupting neuronal transmission and cytotoxicity (Tiwari 
et al., 2019; Gao et al., 2018). NFT deposition and plaque 
formation, commonly known as the “M1-like phenotype” 
(Tiwari et al., 2019), are triggered by microglial activation 
and local inflammatory responses. This inflammatory state 
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ultimately leads to neuronal and synaptic instability, which 
may specifically influence some behavioral functions, such as 
memory, learning, and emotion (Liu, 2019). 
     Pharmacological options for AD currently exist, including 
acetyl-cholinesterase inhibitors (AChEIs) like galantamine, 
rivastigmine, and donepezil (Cummings et al., 2019). These 
medications work by increasing the levels of acetylcholine 
by inhibiting its degradation, favoring its accumulation, and 
increasing neural function (Breijyeh et al., 2020). Memantine, 
combined with AChEIs or used by itself, is recommended 
for late stages of the disease and works by inhibiting the 
neurotransmission of glutamate, avoiding progressive 
neurodegeneration and continuous excitotoxicity (Kishi et al., 
2020; Wang and Reddy, 2017). 
     The use of exogenous or synthetic neural peptides as a 
potential treatment for NDDs has been investigated for AD. 
Such is the case with glatiramer acetate (GA), an amino acid 
copolymer produced from alanine that has been shown to 
significantly slow the progression of AD (Koronyo-Hamaoui 
et al., 2011; Bakalash et al., 2011). Microglial activation 
and a considerable reduction of fibrillar myeloid presence in 
hippocampal areas are associated with reduced brain interferon 
expression after weekly GA administration (Frenkel et al., 
2014). GA administration increases IL-10 levels that target the 
innate immune system and glial cells, assisting in the reduction 
of neuroinflammation (Koronyo et al., 2015) and macrophage 
infiltration, both of which are strongly linked to a shift from 
a proinflammatory to an anti-inflammatory profile (Butovsky 
et al., 2007). Long-term administration of GA is associated 
with improved cognitive performance, synaptic preservation, 
neurogenesis, and a reduction in astrogliosis (Koronyo et al., 
2015; Janus et al., 2000).
     MNP-based immunotherapy has progressed to the point 
where several vaccines can produce specific antibodies 
against the structural components of each illness. CAD106, a 
contemporary immunotherapy developed to produce antibodies 
against the Aβ neuropeptide fragments acting as a B-cell 
epitope, is among the most researched (Winblad et al., 2012). 
Its long-term administration can induce a specific antibody 
response against Aβ with a long decline time and a strong 
serological reaction in mild and severe stages of AD in patients 
without inducing a T cell immune response, reducing the risk 
of autoimmune reactivity (Farlow et al., 2015; Vanderberghe et 
al., 2016), and decreasing Aβ accumulation in the hippocampus, 
thalamus, and cerebral cortex (Vanderberghe et al., 2016). 
In addition, the antibodies produced by the vaccine aid in 
preventing neuroinflammation in high-risk locations by 
blocking the toxicity of Aβ aggregations. In transgenic mouse 
models, immunization with CAD106 has been shown to prevent 

up to 80% of the buildup of senile plaques (Wiessner et al., 
2011).

Parkinson’s disease
PD is the second most frequent NDD present in the elderly 
(Alexuidi et al., 2018). The incidence of PD incidence is 
constantly increasing and is expected to double by 2050, 
ultimately reaching 12 million cases worldwide (Tolosa et 
al., 2021; Dorsey et al., 2018). The pathophysiology of PD 
includes the loss of dopaminergic neurons in the substantia 
nigra pars compacta (Balestrino and Schapira, 2020). The most 
common clinical presentation of PD includes three key motor 
features: rigidity, bradykinesia, and resting tremors (Poewe et 
al., 2017; Cacabelos, 2017). The multifactorial etiology of PD 
results from a combination of biological and environmental 
factors (Cacabelos, 2017; Simon et al., 2020). Some genes 
that substantially enhance the development of PD have been 
identified, including Parkin (PARK) 2, PARK7, α-synuclein 
(SNCA), leucine-rich repeat kinase (LRRK2), and PTEN-
induced and putative kinase 1 (PINK1) (Cacabelos, 2017).
     α-Synuclein is a protein located in different areas of the 
brain, including the substantia nigra and the cerebellum. 
α-Synuclein has physiological roles in the fusion and trafficking 
of vesicles through the axon and its consequent transport (Simon 
et al., 2020; Jankovic and Tan, 2020).  α-Synuclein has been 
identified as a pathognomonic marker of several NDDs because, 
when it is misfolded, it accumulates in intracytoplasmic 
inclusions, more commonly known as Lewy bodies. This 
accumulation induces the cellular expression of toxic cytokines, 
which consequently impairs synaptic function and leads to 
neuronal deterioration (Balestrino and Schapira, 2020). Lewy 
bodies have been found in the substantia nigra in autopsies of 
PD animal models and humans with PD (Dickson, 2020). It is 
recognized that PD pathophysiology presents with a significant 
pro-inflammatory component. Some neuroinflammatory 
processes that may enhance PD pathogenesis include the 
disproportionate amount of pro-inflammatory cytokines like 
tumor necrosis factor-α, IL-6, and apoptosis-related factors that 
promote neurotoxicity and cell death (Cacabelos, 2017). Pro-
inflammatory environments may disrupt the BBB, allowing 
for cyclic peripheral inflammatory contributions to PD and 
magnification of the progressive dopaminergic loss (Ahmad et 
al., 2020). This dysfunction affects the L1 transporter localized 
in neuronal membranes, which, along with the metabolic 
precursor levodopa, are key for dopamine synthesis, suggesting 
that the alteration in BBB may lead to insufficient dopamine 
synthesis (Ahmad et al., 2020).
     The current medications for PD include dopamine agonists, 
levodopa, monoamine oxidase inhibitors (MAO-i), and 

Figure 1. Neural peptides can be modified to target immune cells in order to confer anti-inflammatory effects, thereby sequestering the 
inflammation-mediated secondary cell death associated with neurodegenerative diseases.
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amantadine (Radhakrishnan, 2018). Non-motor symptoms, like 
autonomic symptoms, are treated with AChEIs like memantine 
(Gouda et al., 2020; Hayes, 2019). Pioneering evidence 
suggests that MNPs may play a neuroprotective role that can 
be implemented as a PD treatment. One MNP is Cop-1, which 
is shown to incite the switch from a Th1 to a Th2 phenotype, 
enabling a neuroprotective environment for dopaminergic 
neurons to survive and a modulating effect on microglial 
responses (Laurie et al., 2007; Valera and Masliah, 2013).
     Due to α-synuclein misfolding and accumulation, there is 
an enhancement of toxic effects in the brain. Thus, a treatment 
that reduces α-synuclein accumulation must be implemented 
(Valera and Masliah, 2013). The AFFITOPE PD01 vaccine is 
a peptide carrier that induces antibodies. Cross-reactivity is 
prevented because the vaccine recognizes only α-synuclein, 
without interacting with β-synuclein, a protein with multiple 
neuroprotective properties (Schneeberger et al., 2012). For 
vaccination, PD01 is administered, which directly targets the 
site of α-synuclein accumulation, preventing further protein 
aggregation. This immunization has demonstrated abilities 
to decrease cerebral levels of α-synuclein, ameliorating 
neural alterations such as dendritic density loss and neuronal 
dysfunction. The vaccine also improves cognitive and motor 
functions. Furthermore, substantial memory changes were seen 
in several animal models after almost two years of the first 
PD01 vaccine administration (Masliah et al., 2011; Masliah et 
al., 2005). Taking this into consideration, MNPs represent a 
promising treatment for neurodegenerative diseases like PD. 
Further research is needed to assess its safety and other benefits 
of its usage.

Stroke
Cerebrovascular ischemia, better known as stroke, constitutes 
the second most common cause of death globally and the top 
cause of disability. Additionally, the increasing aging population 
has elevated the number of stroke cases (Campbellet al., 2019; 
Xu et al., 2020; Yang et al., 2019). Proinflammatory mediators 
are induced by ischemia, leading to cell death and dysfunction 
(Xu et al., 2020). Cerebrovascular ischemia originates from 
hypoperfusion, leading to impaired cerebral blood flow 
(CBF) characterized by embolism and thrombosis (Quin et 
al., 2020; Makris et al., 2018). Multiple hormonal, oxidative, 
and biochemical mechanisms constitute ischemic stroke’s 
pathophysiology, resulting in microvascular injury and BBB 
damage (Jayaraj et al., 2019).
     Ischemic stroke manifests with impaired CBF and metabolic 
demand imbalance (Sekhar et al., 2020). Some regions of 
ischemia-affected tissue can be restored to normality with 
adequate treatment, while other areas have irreversible damage. 
Harmful and neuroprotective pathways are activated during an 
ischemic stroke (Goyal et al., 2020). Such pathways include 
alterations in the BBB, inflammation, apoptosis, reactive oxygen 
species, and hemostatic activation (Campbell et al., 2020). 
Another example is the deficient delivery of glucose and oxygen 
secondary to vessel obstruction and subsequent ATP production 
impairment. These metabolic changes generate cytotoxic edema 
(Makris et al., 2018). Another imperative aspect of stroke’s 
pathophysiology is excitotoxicity. When a significant reduction 
of phosphocreatine and ATP occurs, excitatory amino acids are 
discharged, causing an unrestricted depolarization within the 
penumbra, leading to a rise in calcium, glutamate, and sodium 
concentrations (Jayaraj et al., 2019). This increase can result 
in “reactive astrogliosis,” where neuronal death and astrocyte 
injury occur (Xu et al., 2020).
     Moreover, large amounts of reactive oxygen and reactive 
nitrogen species coupled with deficient cellular antioxidant 
production can damage cell components (Makris et al., 2018; 
Li et al., 2018). Yet another aspect of stroke’s pathophysiology 

is DNA damage, which triggers multiple pathways stimulating 
apoptosis and worsening the prognosis (Li et al., 2018). The 
anti-inflammatory responses to stroke are also important 
(Campbell et al., 2019). Tissue recovery and restoration 
of neurons are also triggered following anti-inflammatory 
responses in the pathology (Sakai and Shichita, 2019).
     There are a variety of accepted treatments for ischemic 
strokes, such as thrombolytics like alteplase and tenecteplase, 
mechanical thrombolysis, stent retrievers, and endovascular 
therapy (Rabinstein and Alejandro, 2017; Catanese et al., 2017). 
The primary mechanism of these therapies is reperfusion of 
damaged areas, which has risks of hemorrhagic transformation 
and widespread cell death. Thus, recent studies have aimed 
to improve these treatments. For instance, immunization 
with NR2B9c (KLSSIESDV), a neuroprotective modified 
peptide, disrupts N-methyl-D-aspartate receptors, and PSD-
95, the postsynaptic density protein-95, while not overtly 
blocking them (Meloni et al., 2020). Wheat germ agglutinin 
is used to deliver and preserve the therapeutic actions of 
NR2B9c (Aloizou et al., 2021; Arnon and Rina, 2019). 
Furthermore, regulatory and helper T cell actions are initiated 
by constitutive photomorphogenesis protein 1, which promotes 
neurogenesis. In tandem with neurogenesis, angiogenesis may 
be required for enhanced therapeutic outcomes in stroke. To 
this end, a hydrophilic protein called myelin basic protein 
may augment myelin sheath development of Schwann cells 
and oligodendrocytes, which is impaired during an ischemic 
stroke (Chen et al., 2019). In addition to myelin basic protein, 
myelin oligodendrocyte glycoprotein (MOG) has also been 
viewed as a potent contributor to vasculogenesis. MOG is a 
part of the immunoglobulin family that is presented on the 
surface of oligodendrocytes beside myelin sheaths (Peschl et 
al., 2019; Di Pauli and Berger, 2018). It is possible to modify 
MOG on its 35-55 amino acids. Thus MOG represents an 
attractive MNP therapy for cerebral ischemia due to its ability 
to reduce stroke area by stimulating IL-10 and T helper cell 
production (Wang et al., 2017; Yang et al., 2017). In summary, 
MNPs offer a novel approach to stroke therapy by facilitating 
multiple neuroprotective and regenerative processes, such 
as neurogenesis, vasculogenesis, and anti-inflammatory 
mechanisms.

Conclusion
NDDs represent a detrimental health problem worldwide. 
Current treatments for these pathologies are mainly 
symptomatic, and they rarely modify disease progression 
or help in CNS functional recovery. Modulating immune 
responses is designed to reach a physiological state where the 
immune response is not suppressed but enhanced instead in 
an anti-inflammatory and self-repairing phenotype. MNPs are 
a promising therapy for achieving an autoreactive response 
in a protective phenotype using the patients' immune systems 
against NDDs. Various MNPs have been studied over the past 
decade with promising results suggesting that immunization 
with MNPs warrants serious pre-clinical evaluation toward 
clinical trials for NDDs. 
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